Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7019, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945597

RESUMO

Implantable cell therapies and tissue transplants require sufficient oxygen supply to function and are limited by a delay or lack of vascularization from the transplant host. Previous exogenous oxygenation strategies have been bulky and had limited oxygen production or regulation. Here, we show an electrocatalytic approach that enables bioelectronic control of oxygen generation in complex cellular environments to sustain engineered cell viability and therapy under hypoxic stress and at high cell densities. We find that nanostructured sputtered iridium oxide serves as an ideal catalyst for oxygen evolution reaction at neutral pH. We demonstrate that this approach exhibits a lower oxygenation onset and selective oxygen production without evolution of toxic byproducts. We show that this electrocatalytic on site oxygenator can sustain high cell loadings (>60k cells/mm3) in hypoxic conditions in vitro and in vivo. Our results showcase that exogenous oxygen production devices can be readily integrated into bioelectronic platforms, enabling high cell loadings in smaller devices with broad applicability.


Assuntos
Hipóxia , Oxigênio , Humanos , Hipóxia Celular , Fenômenos Fisiológicos Respiratórios
2.
Digit Health ; 9: 20552076231158314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138585

RESUMO

Objectives: Overeating interventions and research often focus on single determinants and use subjective or nonpersonalized measures. We aim to (1) identify automatically detectable features that predict overeating and (2) build clusters of eating episodes that identify theoretically meaningful and clinically known problematic overeating behaviors (e.g., stress eating), as well as new phenotypes based on social and psychological features. Method: Up to 60 adults with obesity in the Chicagoland area will be recruited for a 14-day free-living observational study. Participants will complete ecological momentary assessments and wear 3 sensors designed to capture features of overeating episodes (e.g., chews) that can be visually confirmed. Participants will also complete daily dietitian-administered 24-hour recalls of all food and beverages consumed. Analysis: Overeating is defined as caloric consumption exceeding 1 standard deviation of an individual's mean consumption per eating episode. To identify features that predict overeating, we will apply 2 complementary machine learning methods: correlation-based feature selection and wrapper-based feature selection. We will then generate clusters of overeating types and assess how they align with clinically meaningful overeating phenotypes. Conclusions: This study will be the first to assess characteristics of eating episodes in situ over a multiweek period with visual confirmation of eating behaviors. An additional strength of this study is the assessment of predictors of problematic eating during periods when individuals are not on a structured diet and/or engaged in a weight loss intervention. Our assessment of overeating episodes in real-world settings is likely to yield new insights regarding determinants of overeating that may translate into novel interventions.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36448973

RESUMO

Automated detection and validation of fine-grained human activities from egocentric vision has gained increased attention in recent years due to the rich information afforded by RGB images. However, it is not easy to discern how much rich information is necessary to detect the activity of interest reliably. Localization of hands and objects in the image has proven helpful to distinguishing between hand-related fine-grained activities. This paper describes the design of a hand-object-based mask obfuscation method (HOBM) and assesses its effect on automated recognition of fine-grained human activities. HOBM masks all pixels other than the hand and object in-hand, improving the protection of personal user information (PUI). We test a deep learning model trained with and without obfuscation using a public egocentric activity dataset with 86 class labels and achieve almost similar classification accuracies (2% decrease with obfuscation). Our findings show that it is possible to protect PUI at smaller image utility costs (loss of accuracy).

4.
Artigo em Inglês | MEDLINE | ID: mdl-36447642

RESUMO

Wearable cameras provide an informative view of wearer activities, context, and interactions. Video obtained from wearable cameras is useful for life-logging, human activity recognition, visual confirmation, and other tasks widely utilized in mobile computing today. Extracting foreground information related to the wearer and separating irrelevant background pixels is the fundamental operation underlying these tasks. However, current wearer foreground extraction methods that depend on image data alone are slow, energy-inefficient, and even inaccurate in some cases, making many tasks-like activity recognition- challenging to implement in the absence of significant computational resources. To fill this gap, we built ActiSight, a wearable RGB-Thermal video camera that uses thermal information to make wearer segmentation practical for body-worn video. Using ActiSight, we collected a total of 59 hours of video from 6 participants, capturing a wide variety of activities in a natural setting. We show that wearer foreground extracted with ActiSight achieves a high dice similarity score while significantly lowering execution time and energy cost when compared with an RGB-only approach.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38031552

RESUMO

Smoking is the leading cause of preventable death worldwide. Cigarette smoke includes thousands of chemicals that are harmful and cause tobacco-related diseases. To date, the causality between human exposure to specific compounds and the harmful effects is unknown. A first step in closing the gap in knowledge has been measuring smoking topography, or how the smoker smokes the cigarette (puffs, puff volume, and duration). However, current gold-standard approaches to smoking topography involve expensive, bulky, and obtrusive sensor devices, creating unnatural smoking behavior and preventing their potential for real-time interventions in the wild. Although motion-based wearable sensors and their corresponding machine-learned models have shown promise in unobtrusively tracking smoking gestures, they are notorious for confounding smoking with other similar hand-to-mouth gestures such as eating and drinking. In this paper, we present SmokeMon, a chest-worn thermal-sensing wearable system that can capture spatial, temporal, and thermal information around the wearer and cigarette all day to unobtrusively and passively detect smoking events. We also developed a deep learning-based framework to extract puffs and smoking topography. We evaluate SmokeMon in both controlled and free-living experiments with a total of 19 participants, more than 110 hours of data, and 115 smoking sessions achieving an F1-score of 0.9 for puff detection in the laboratory and 0.8 in the wild. By providing SmokeMon as an open platform, we provide measurement of smoking topography in free-living settings to enable testing of smoking topography in the real world, with potential to facilitate timely smoking cessation interventions.

6.
Artigo em Inglês | MEDLINE | ID: mdl-34222759

RESUMO

We present the design, implementation, and evaluation of a multi-sensor, low-power necklace, NeckSense, for automatically and unobtrusively capturing fine-grained information about an individual's eating activity and eating episodes, across an entire waking day in a naturalistic setting. NeckSense fuses and classifies the proximity of the necklace from the chin, the ambient light, the Lean Forward Angle, and the energy signals to determine chewing sequences, a building block of the eating activity. It then clusters the identified chewing sequences to determine eating episodes. We tested NeckSense on 11 participants with and 9 participants without obesity, across two studies, where we collected more than 470 hours of data in a naturalistic setting. Our results demonstrate that NeckSense enables reliable eating detection for individuals with diverse body mass index (BMI) profiles, across an entire waking day, even in free-living environments. Overall, our system achieves an F1-score of 81.6% in detecting eating episodes in an exploratory study. Moreover, our system can achieve an F1-score of 77.1% for episodes even in an all-day-long free-living setting. With more than 15.8 hours of battery life, NeckSense will allow researchers and dietitians to better understand natural chewing and eating behaviors. In the future, researchers and dietitians can use NeckSense to provide appropriate real-time interventions when an eating episode is detected or when problematic eating is identified.

7.
J Med Internet Res ; 21(12): e14904, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31799938

RESUMO

BACKGROUND: Conventional diet assessment approaches such as the 24-hour self-reported recall are burdensome, suffer from recall bias, and are inaccurate in estimating energy intake. Wearable sensor technology, coupled with advanced algorithms, is increasingly showing promise in its ability to capture behaviors that provide useful information for estimating calorie and macronutrient intake. OBJECTIVE: This paper aimed to summarize current technological approaches to monitoring energy intake on the basis of expert opinion from a workshop panel and to make recommendations to advance technology and algorithms to improve estimation of energy expenditure. METHODS: A 1-day invitational workshop sponsored by the National Science Foundation was held at Northwestern University. A total of 30 participants, including population health researchers, engineers, and intervention developers, from 6 universities and the National Institutes of Health participated in a panel discussing the state of evidence with regard to monitoring calorie intake and eating behaviors. RESULTS: Calorie monitoring using technological approaches can be characterized into 3 domains: (1) image-based sensing (eg, wearable and smartphone-based cameras combined with machine learning algorithms); (2) eating action unit (EAU) sensors (eg, to measure feeding gesture and chewing rate); and (3) biochemical measures (eg, serum and plasma metabolite concentrations). We discussed how each domain functions, provided examples of promising solutions, and highlighted potential challenges and opportunities in each domain. Image-based sensor research requires improved ground truth (context and known information about the foods), accurate food image segmentation and recognition algorithms, and reliable methods of estimating portion size. EAU-based domain research is limited by the understanding of when their systems (device and inference algorithm) succeed and fail, need for privacy-protecting methods of capturing ground truth, and uncertainty in food categorization. Although an exciting novel technology, the challenges of biochemical sensing range from a lack of adaptability to environmental effects (eg, temperature change) and mechanical impact, instability of wearable sensor performance over time, and single-use design. CONCLUSIONS: Conventional approaches to calorie monitoring rely predominantly on self-reports. These approaches can gain contextual information from image-based and EAU-based domains that can map automatically captured food images to a food database and detect proxies that correlate with food volume and caloric intake. Although the continued development of advanced machine learning techniques will advance the accuracy of such wearables, biochemical sensing provides an electrochemical analysis of sweat using soft bioelectronics on human skin, enabling noninvasive measures of chemical compounds that provide insight into the digestive and endocrine systems. Future computing-based researchers should focus on reducing the burden of wearable sensors, aligning data across multiple devices, automating methods of data annotation, increasing rigor in studying system acceptability, increasing battery lifetime, and rigorously testing validity of the measure. Such research requires moving promising technological solutions from the controlled laboratory setting to the field.


Assuntos
Ingestão de Energia , Comportamento Alimentar , Dispositivos Eletrônicos Vestíveis , Algoritmos , Educação , Humanos , Smartphone , Telemedicina , Estados Unidos
8.
Artigo em Inglês | MEDLINE | ID: mdl-32318651

RESUMO

Activity-oriented cameras are increasingly being used to provide visual confirmation of specific hand-related activities in real-world settings. However, recent studies have shown that bystander privacy concerns limit participant willingness to wear a camera. Researchers have investigated different image obfuscation methods as an approach to enhance bystander privacy; however, these methods may have varying effects on the visual confirmation utility of the image, which we define as the ability of a human viewer to interpret the activity of the wearer in the image. Visual confirmation utility is needed to annotate and validate hand-related activities for several behavioral-based applications, particularly in cases where a human in the loop method is needed to label (e.g., annotating gestures that cannot be automatically detected yet). We propose a new type of obfuscation, activity-oriented partial obfuscation, as a methodological contribution to researchers interested in obtaining visual confirmation of hand-related activities in the wild. We tested the effects of this approach by collecting ten diverse and realistic video scenarios that involved the wearer performing hand-related activities while bystanders performed activities that could be of concern if recorded. Then we conducted an online experiment with 367 participants to evaluate the effect of varying degrees of obfuscation on bystander privacy and visual confirmation utility. Our results show that activity-oriented partial obfuscation (1) maintains visual confirmation of the wearer's hand-related activity, especially when an object is present in the hand, and even when extreme filters are applied, while (2) significantly reducing bystander concerns and enhancing bystander privacy. Informed by our analysis, we further discuss the impact of the filter method used in activity-oriented partial obfuscation on bystander privacy and concerns.

9.
Artigo em Inglês | MEDLINE | ID: mdl-34262408

RESUMO

Wrist-worn devices hold great potential as a platform for mobile health (mHealth) applications because they comprise a familiar, convenient form factor and can embed sensors in proximity to the human body. Despite this potential, however, they are severely limited in battery life, storage, band-width, computing power, and screen size. In this paper, we describe the experience of the research and development team designing, implementing and evaluating Amulet - an open-hardware, open-software wrist-worn computing device - and its experience using Amulet to deploy mHealth apps in the field. In the past five years the team conducted 11 studies in the lab and in the field, involving 204 participants and collecting over 77,780 hours of sensor data. We describe the technical issues the team encountered and the lessons they learned, and conclude with a set of recommendations. We anticipate the experience described herein will be useful for the development of other research-oriented computing platforms. It should also be useful for researchers interested in developing and deploying mHealth applications, whether with the Amulet system or with other wearable platforms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...